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Abstract—This paper considers the problem of self-interested
agents engaged in costly exploration when individual findings
benefit all agents. The purpose of the exploration is to reason
about the nature and value of the different opportunities available
to the agents whenever such information is a priori unknown.
While the problem has been considered for the case where the
goal is to maximize the overall expected benefit, the focus of
this paper is on settings where the agents are self-interested,
i,e, each agent’s goal is to maximize its individual expected
benefit. The paper presents an equilibrium analysis of the model,
considering both mixed and pure equilibria. The analysis is
used to demonstrate two somehow non-intuitive properties of
the equilibrium cooperative exploration strategies used by the
agents and their resulting expected payoffs: (a) when using mixed
equilibrium strategies, the agents might lose due to having more
potential opportunities available for them in their environment;
and (b) if the agents can have additional agents join them in the
exploration they might prefer the less competent ones to join the
process.

Keywords-Multi-Agent Exploration, Cooperation

I. INTRODUCTION

In many multi-agent settings, agents need to individually
engage in exploration of the opportunities available to them
[6]. The purpose of the exploration is to reason about the
nature and value of the different opportunities whenever such
information is a priori unknown [12], [7], [13]. Since such
exploration is inherently costly (either involves direct monetary
costs or the consumption of some of the agent’s resources) the
goal of the agents is not necessarily to find the opportunity
associated with the maximum value, but rather to maximize
the overall benefit, defined as the value of the opportunity
eventually picked minus the costs accumulated during the
exploration process. As an example, consider the following
scenario: Jill wants to buy some magic beans. While Jill knows
which stores sell magic beans in the nearest shopping mall, she
does not know a priori the price in each store. By visiting the
different stores, Jill can find the lowest posted price, however
since Jill’s time is valuable (e.g., she might as well use the
time for other errands) her goal is not necessarily to find the
lowest price (i.e., visit all stores) but rather to manage the
visits in the different stores such that the sum of the overall
exploration cost-equivalent and the price at which the beans
are eventually purchased is minimized.

In many cases the results of exploration carried out by one
agent can be of benefit to other agents. In our example, Jill
can offer her friend Jack, who is also interested in buying
magic beans, to join her at the shopping mall and execute
the exploration process cooperatively. This way each of them
will be individually visiting a different subset of stores, and
eventually they will share their findings and buy at the store

associated with the minimum price among those visited. While
many kinds of cooperative exploration strategies have been
suggested in prior work, the assumption they all act on
assumption that the goal is to maximize the joint expected
benefit or minimize the joint expected cost (i.e., the sum of
the value with which the agents end up minus the costs all
agents incur along the exploration process). Still, in many
settings agents are self-interested and attempt to maximize
their individual expected benefit rather than the joint benefit.
For example, Jill may find it more beneficial to visit just one
store that sells magic beans and then spend her time doing her
other shopping. When she meets Jack later, Jill will benefit
from the information he obtained through his exploration,
however her own spending on exploration will be minimal.

In this paper we supply a cohesive analysis of a model of
cooperative exploration with self-interested agents. The anal-
ysis derives from the individual expected-benefit-maximizing
exploration strategies of the different agents, given the explo-
ration strategies of the others. These facilitate an equilibrium
analysis, proving that each agent first determines whether it
will engage in exploration at all, and if so it necessarily uses
a threshold-based exploration strategy, terminating the explo-
ration only if the value obtained is below (or, depending on the
application, above) the threshold. The analysis considers both
mixed and pure equilibria, introducing the sets of equations
that need to be solved for extracting agents strategies and the
conditions that need to be checked for validating the stability
of these solutions.

The analysis is used for demonstrating the effect of the
different model parameters, in particular the exploration com-
petence of the different agents (i.e., their cost of exploration)
and the number of agents that explore cooperatively, over
the expected individual and total benefit. One somehow non-
intuitive result that is demonstrated is that an increase in the
allowed exploration horizon (e.g., the number of potential
stores at the shopping mall that sell magic beans) results in a
decrease in the individual expected benefit of the agents when
mixed equilibrium is used. Another somehow-surprising result
that is illustrated in the paper is that if the agents are allowed to
add an additional agent to their cooperative exploration, then
sometimes the less competent agent (in terms of exploration
cost) is the preferable candidate. In the magic beans example,
if Jack and Jill have an additional empty seat in their car and
need to decide between two of their friends that want to join
them (both interested in magic beans as well), then the friend
that does not know the structure of the shopping mall might
be preferred over the one who knows all the shortcuts and can

2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology

978-0-7695-4880-7/12 $26.00 © 2012 IEEE

DOI 10.1109/WI-IAT.2012.155

17



get to each store faster. These results are in contrast to the case
where the agents are fully cooperative and attempt to maximize
the overall expected benefit. The fact that the agents are self-
interested suggests that many potential solutions, in the form
of exploration strategies that are beneficial from the individual
and overall expected benefit point of view, become unstable,
and the resulting stable solutions are such that the agents find
it less beneficial to explore substantially.

In the following section we formally present the model
of cooperative exploration with self-interested agents. We
present the model analysis in Section III. Section IV illustrates
the equilibrium dynamics and resulting performance under
different settings. Related work is surveyed in Section V.
Finally, we conclude and discuss directions for future research.

II. THE MODEL

We consider a setting where k self-interested individual
agents need to engage in exploration of possible available
opportunities. Each agent may see a different value in each
opportunity, and there is no limit to the number of agents that
can benefit from it (e.g., an opportunity can represent a price
quote of a seller and any demand can be satisfied). The value
of each opportunity is a priori unknown and the agents are
only acquainted with the probability distribution function from
which the values of the different opportunities available to each
agent Ai are derived, denoted fi(x). In order to obtain the
true value of an opportunity (i.e., to “query” the opportunity),
an agent needs to consume some of its resources. This is
modeled by a cost ci (agent dependent), expressed in terms
of opportunity values. Therefore, the agents are required to
conduct an exploration process which takes into consideration
the tradeoff between the marginal improvement in the highest
value found and the cost incurred along the process.

Since each opportunity is applicable to all agents, the agents
have an incentive to explore as a team. This way, each oppor-
tunity will be evaluated by only one of the agents and then
shared with all others. This form of exploration necessarily
dominates individual explorations, since any strategy used
by the different agents when exploring individually can be
adopted by the team, resulting in the same cost of exploration
however with the best value found shared by all agents. The
benefit of an agent at the end of the process is therefore the
best value obtained by the group minus the costs accumulated
individually along the agent’s exploration process. The model
assumes that the agents are constrained by an exploration
horizon of n time periods and that in each exploration period
each agent can query at most one opportunity (while incurring
the appropriate cost), i.e., the agents can cooperatively query
kn opportunities at most along their cooperative exploration.

While there are many communication schemes that can
be considered for the model, in this paper we assume no
communication between the agents along their cooperative
exploration. Once all agents have individually decided to
terminate their exploration, the values found by each agent
are shared with all of the other agents and can be used by any
of them. Since the agents are self-interested, they cannot be
forced to explore all possible n opportunities (or any desired

subset), and their extent of exploration is the one that maxi-
mizes their individual expected benefit given the exploration
strategies used by the other agents. Finally, the overall number
of opportunities available to the agents is assumed to be greater
than the maximum number of opportunities the agents can
potentially query, kn, and the agents are assumed to be capable
of exploring the different opportunities with no overlap (i.e.,
no two agents will query the same opportunity).

III. ANALYSIS

We first present the expected-benefit-maximizing explo-
ration strategy of a single agent with no cooperative explo-
ration. The single agent’s strategy is then augmented to the
case of cooperative exploration, taking into consideration the
distribution of the best value resulting from the exploration of
the other agents. This leads to equilibrium analysis, in which
a stable set of strategies are found, from which none of the
agents has an incentive to deviate individually. Finally, we
also develop the optimal cooperative exploration strategy, to
be used later for comparing the loss, in terms of aggregate
expected benefit, due to the fact that the agents are self-
interested rather than cooperative.

Since there is no communication between the agents and
the best values obtained are revealed at the end of the
individual explorations, the agents, if choosing to take part
in the exploration, will all initiate their individual explorations
at time t = 1. The benefit of having all agents start at the
first period is that this way each agent will be less constrained
by the exploration horizon n. Since opportunity values are
derived from a common distribution function, any a priori
order according to which opportunities are explored is likely
to produce the same result. An agent’s exploration strategy is
therefore a mapping S(v)→ {resume, terminate}, where v
is the best value found so far, resume suggests the exploration
of another opportunity and terminate suggests terminating
the exploration process and returning the value v. If the
agent relies solely on the best value it achieves through-
out its exploration, then the model can be mapped to the
legacy sequential exploration model found in literature and the
optimal (expected-benefit-maximizing) exploration strategy is
reservation-value (threshold) based [19]. According to this
strategy, each agent Ai calculates a reservation-value ri, and
resumes its exploration as long as the best value found so
far is below ri. The expected-benefit-maximizing ri value is
extracted from:

ci =

∫ ∞

y=ri

(y − ri)fi(y)dy (1)

Intuitively, ri is the value where the exploring agent Ai

is precisely indifferent: the expected marginal benefit from
obtaining the value of the opportunity exactly equals the cost
of obtaining that additional value. It is notable that the value of
ri does not depend on the number of remaining oppertunities
which values are still unknown.

Now consider the case where the value with which the
agent ends up is the maximum among any of the opportunities
evaluated by any of the agents. Theorem 1 suggests that in
this case, the agents’ exploration strategy is still reservation-
value (threshold) based and that the reservation value used
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is stationary, i.e., the agent continues evaluating opportunities
until obtaining an opportunity which value is above some
reservation value r.

Theorem 1: The expected-benefit-maximizing exploration
strategy for agent Ai is to set a reservation value ri, where ri
is the solution to:

ci=

∫ ∞

y=ri

fi(y)

∫ ∞

x=−∞
(max(y, x)−max(ri, x))f̄i(x)dxdy (2)

where f̄i(x) is the probability distribution function of the
maximal value obtained along the exploration of the other
agents.
The agent should always choose to obtain the value of another
opportunity if the highest value obtained so far is below
ri and terminate the exploration once the maximum value
obtained so far is greater than ri. The individual exploration
also terminates once all opportunities have been explored.

Proof: The agents’ strategies are necessarily reservation-
value based because, in the absence of any other new infor-
mation along the exploration process, each agent can base
its strategy only on the best value obtained so far (hence
a reservation-value based strategy). We now prove that the
reservation value used by each agent remains stationary along
its exploration and calculated according to Equation 2. We
use rji to denote the reservation value to be used in the j-

th time period (j ≤ n). We first prove that rji ≤ rj−1
i for

any 1 < j ≤ n. This proof is simple — if an agent finds
it beneficial to explore an additional opportunity when n − j
opportunities remaining, then it is necessarily beneficial for
the agent to explore an additional opportunity if n − j + 1
opportunities remain. Now consider the expected benefit of
the agent upon reaching the j-th opportunity (i.e., at time j) if
the best value it has found so far is x. If x ≤ rj+1

i then
the agent necessarily needs to explore the i-th opportunity
(since rji ≤ rj−1

i ). If x > rj+1
i , then the agent can either

terminate its exploration, in which case its expected benefit is∫∞
z=−∞max(x, z)f̄i(z)dz, or explore the j − th opportunity.

If exploring the j − th opportunity then it is guaranteed that
the agent will terminate exploration right after, as x > rj+1

i .1

Therefore, the expected benefit from the additional exploration
is given by: −ci+

∫ x

y=−∞ fi(y)
∫∞
z=−∞max(x, z)f̄i(z)dzdy+∫∞

y=x
fi(y)

∫∞
z=−∞max(y, z)f̄i(z)dzdy. The first term relates

to the case where the value obtained in the j-th exploration
is above x, whereas the second term relates to the case where
it is below x (however, given that the agent already has
value x > rj+1

i at hand, the exploration terminated without
exploring the j + 1 opportunity). The agent should therefore
explore the j-th opportunity if:∫ ∞

z=−∞
max(x, z)f̄i(z)dz ≥− ci (3)

+

∫ x

y=−∞
fi(y)

∫ ∞

z=−∞
max(x, z)f̄i(z)dzdy

+

∫ ∞

y=x

fi(y)

∫ ∞

z=−∞
max(y, z)f̄i(z)dzdy

1And similarly, in the case j = n the exploration will terminate right after,
in the absence of further exploration opportunities.

The reservation value rji is, by definition, the value x for
which the expected benefit from resuming the exploration
process equals the best value obtained so far throughout the
exploration. Therefore, rji is the value x for which Equation 3
becomes an equality. The derivative of both sides of Equation
3 reveals that the right-hand-side increases at a lower rate
compared to the left-hand-side term, therefore there is a single
reservation value that satisfies the equality. Substituting x = rji
in Equation 3 in its equality form and applying some standard
mathematical manipulations obtains Equation 2.

Theorem 1 specifies the best response strategy of any of the
agents, given the strategies used by the other agents. Since the
agents are self-interested, they may find it beneficial to avoid
exploration at all entirely benefit from the findings of others.
Any given solution, therefore, needs to be checked for stability,
and the equilibrium is a set of strategies from which none of
the agents will want to deviate individually. In order to extend
the equilibrium analysis, we allow also mixed-equilibrium
solutions. A mixed equilibrium in this case is based on a
set {(p1, r1), ..., (pk, rk)} where pi is the probability that
agent Ai will engage in exploration, and ri is the reservation
value the agents will use if exploring. It is notable that if
the agent finds it beneficial to engage in exploration, then it
will necessarily use the expected-benefit-maximizing strategy
according to Theorem 1 (i.e., will never randomize along its
exploration).

In order to formulate f̄i(x), we use the probability that the
maximum value obtained along the exploration process of an
agent Ai that uses a reservation value ri is lesser than x,
denoted F return

i (x), calculated according to:

F return
i (x)=

{
Fi(x)

n x<ri
1−Fi(ri)

n

1−Fi(ri)
(Fi(x)−Fi(ri))+Fi(ri)

n x≥ri
(4)

The case where x < ri requires that all n explored oppor-
tunities result in a value below the reservation value ri. In
the case x ≥ ri, if the exploration was terminated at the j-th
exploration then the maximum value obtained throughout the
exploration will be smaller than x only if the value obtained
at the exploration is between x and ri (as otherwise the
exploration resumes) and all the former j − 1 opportunities
queried returned a value smaller than ri (as otherwise the j-
th opportunity is not reached). This results in the geometric

series
∏k

j=1(F (x)−F (ri))F (ri)
j and the final result requires

the addition of the case where all k opportunities turn out to
be associated with a value smaller than ri, i.e., Fi(ri)

n.
Similarly, the function freturn

i (x), which is the probability
the maximum obtained throughout agent Ai’s exploration, is
calculated as the derivative of F return

i (x):

freturn
i (x) =

d(F return
i (x))

dx
(5)

Using F return
i (x) we can now formulate the probability

that the maximum found by all of the agents except for Ai is
smaller or than equal to x, denoted F̄i(x):

F̄i(x) =
k∏

j=1∧j �=i

(pjF
return
j (x) + (1− pj)) (6)
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The calculation is based on having the best value recieved
by any of the agents found in the exploration below x. The
probability that agent j’s best value found throughout its
exploration is below x is F return

j (x) if the agent actually
engaged in exploration (i.e., with pj chance) and 1 otherwise
(i.e. with (1 − pj) chance). Consequently, the probability
function f̄i(x) is the derivative of F̄i(x):

f̄i(x) =
d(F̄i(x))

dx
(7)

These enable calculating the expected benefit of agent
Ai when the other agents are using the set of strategies
{(p1, r1), ..., (pk, rk)}. If the agent chooses to engage in
exploration then its expected benefit, denoted EBi(explore),
is given by:

EBi(explore) = −ci 1− Fi(ri)
n

1− Fi(ri)
(8)

+

∫ ∞

y=−∞
freturn
i (y)

∫ ∞

x=−∞
max(y, x)f̄i(x)dxdy

and when the agent opts not to explore at all, its expected
benefit, denoted EBi(¬explore), is:

EBi(¬explore) =
∫ ∞

x=−∞
xf̄i(x)dx (9)

Equation 8 includes the cost associated throughout the ex-

ploration of Ai, −ci 1−Fi(ri)
n

1−Fi(ri)
, as this becomes a Bernoulli

sampling process with a success probability of F (ri). The
second term is the expected maximum value between the
best value found by the agent itself (i.e., associated with a
distribution freturn

i (y)) and the best value returned by the
other agents (associated with a distribution f̄i(x)). The term
on the right-hand-side of Equation 9 is simply the expected
value of the maximum value returned by the other agents.

At this point, we have everything that is needed in order
to formulate the equilibrium stability conditions. A set of
strategies {(p1, r1), ..., (pk, rk)} will be in equilibrium only
if the following conditions are held: (a) for every agent Ai for
which pi = 0, EBi(explore) ≤ EBi(¬explore); (b) for every
agent Ai for which pi = 1, EBi(explore) ≥ EBi(¬explore);
and (c) for every agent Ai for which 0 < pi < 1,
EBi(explore) = EBi(¬explore). Therefore, in order to find
the equilibrium, one needs to check the stability of 3k possible
solutions of the type {(p1, r1), ..., (pk, rk)} differing in the
value each pi obtains (pi = 0, pi = 1 and 0 < pi < 1).
For every combination, the reservation values and the value
pi of the agents that do explore (0 < pi < 1) should
be calculated by solving a set of equations of type (2) and
EBi(explore) = EBi(¬explore), according to (8) and (9).
Once the appropriate reservation values and probabilities are
extracted, the stability conditions need to be validated.

We note that there is no guarantee that an equilibrium
will actually exist (either pure or mixed). Also, there is no
guarantee that if one exists there will be no other equilibria
(i.e., a multi-equilibria is possible). In the latter case, if there
is one equilibrium that dominates the others in terms of the
individual expected benefit each and every agent obtains then

it will likely be the one used. Otherwise, there is no way of
deciding which of the equilibria is the one to be used, and we
leave this question beyond the scope of the current paper.

Finally, we develop the cooperative overall expected-benefit-
maximizing strategy (denoted “fully cooperative”) that is used
in the following section for comparative purposes. In the
cooperative setting, all agents aim to maximize the sum of their
expected benefits. Naturally, the exploration strategies that
maximize the latter are different from those used for the self-
interested case. Furthermore, while the overall expected benefit
increases when all agents are exploring cooperatively, there
is often an incentive for some of the agents to deviate from
the cooperative strategy in order to improve their individual
expected benefit.

When the agents are cooperative and attempt to maximize
overall expected benefit, the only change that needs to be
made in Equation 3 is the multiplication of max(x, z) and
max(y, z) in k, as any improvement in the best value found
improves the benefit of all k agents. Therefore, the overall
expected-benefit-maximizing reservation value ri to be used
by Ai is the solution to:

ci=k

∫ ∞

y=ri

fi(y)

∫ ∞

x=−∞
max(y, x)−max(ri, x)f̄i(x)dxdy (10)

The overall expected-benefit-maximizing strategy is thus the
set of reservation values (r1, ..., rk) that are the solution to
the set of k equations obtained from substituting i = 1, ..., k
in Equation 10. Since the optimal solution in this case may
be to have only some of the agents engage in exploration,
one needs to iterate over all of the possible combinations of
having k′ < k agents engage in exploration and solve for
(r1, ..., r

′
k), choosing the combination for which the overall

expected benefit is maximal.

Obviously the overall expected benefit obtained when the
agents cooperatively attempt to optimize that measure is
greater than in the case where each self-interested agent
attempts to maximize its own expected benefit.

IV. EQUILIBRIUM DYNAMICS

In this section we demonstrate the resulting equilibrium
exploration strategies and the individual and overall expected
benefit under different settings. In particular we consider the
effect of differences in the exploration competence of the
different agents (i.e., their cost of exploration ci), the number
of agents and the exploration horizon n over individual and
overall benefit.

Figure 1 depicts the expected benefit of the agents as a
function of the exploration horizon n. The setting used for
this example considers three homogeneous agents (k = 3),
each associated with an exploration cost of 0.1 (c1 = c2 =
c3 = 0.1) and a uniform distribution of values (fi(x) = 1
∀0 ≤ x ≤ 1, and fi(x) = 0 otherwise, i = 1, 2, 3). In this
case, the equilibrium calculation, based on the analysis given
in the former section, reveals three different equilibria. The
first two are pure equilibria: (a) when n = 1, two of the agents
explores and one does not; (b) when n > 1, one of the agents
explore, and the two others do not. The third equilibrium is a
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Figure 1. The agents’ expected benefit as a function of the exploration horizon n, for the setting: k = 3, c1 = c2 = c3 = 0.1, and a common uniform
distribution. The two possible equilibria are a mixed one and a pure one (where for n = 1 only two agents engage in exploration and for n > 1 only one
agent engages in exploration). (a) Individual expected benefit. (b) A finer-grained representation for the mixed equilibrium. (c) Overall expected benefit with
the equilibria and when the agents are fully cooperative.

mixed one, where p1 = p2 = p3. The expected benefit of the
agents with each of the equlibria is depicted in Figure 1(a). The
upper curve corresponds to the expected value of the agent(s)
that is not doing any exploration in the pure equilibrium (one
agent in the case where n = 1 and two agents otherwise).
The bottom curve corresponds to the expected value of the
agent(s) that engages in exploration (two agents in the case
where n = 1 and one agent otherwise). Generally, the increase
in the number of opportunities that the agents can explore
has a positive effect over the performance of the agents in
their individual explorations. This explains the increase in the
expected benefit, as a function of n when n > 1, in both
curves. The decrease in both curves when transitioning from
n = 1 to n = 2, though, is explained by the change in the
equilibrium structure — in this case the negative effect of
having only one agent explore in equilibrium outweighs the
positive effect of the increase in the number of opportunities
the agents can explore. The middle curve corresponds to the
expected value when using the mixed equilibrium (hence equal
to all agents).

While the issue of which equilibrium is likely to hold is
beyond the scope of the current paper, we note that neither of
the equlibria (the pure and the mixed) dominates the other. In
this example the pure equilibrium does not result in a better
individual expected benefit to all agents (the agent(s) that does
not engage in exploration ends up with an expected benefit
inferior to the one received with the pure equilibrium). The
advantage of the mixed equilibrium in this context is that
it guarantees that all agents end up with the same expected
benefit, and since the agents are homogeneous, self-interested
and fully rational, it seems like a natural selection.

Figure 1(b) enlarges the middle curve of (a), i.e., depicts
the agents’ individual expected benefit when using the mixed
equilibrium (using a more fine-grained scale). Unlike with the
pure equilibrium (for n > 1), the individual benefit obtained
with the mixed equilibrium actually decreases as the number
of opportunities increases. This non-intuitive behavior results
from the decrease in the value of p used in equilibrium.
The agents can potentially explore to a greater extent, and
if exploring they actually do so, however the decrease in

the chance that they will engage in exploration (as a result
of the stability considerations) results in a total decrease
of the individual expected benefit. Figure 1(c) depicts the
overall expected benefit of the three agents when using the
different equilibria and when acting according to the cooper-
ative exploration strategy (which is inherently unstable). As
observed from the figure, neither of the equilibria generally
dominates the other, and as expected both are dominated by the
cooperative (though non-stable) strategy. The overall expected
benefit with the pure equilibrium converges to the case of
cooperative exploration. This is explained by the fact that as
the cooperative exploration becomes less constrained by the
number of opportunities available, the optimal strategy is to
have just one of the agents engage in exploration (as sequential
exploration dominates parallel exploration whenever there is
no restriction over the number of exploration steps [21]). The
difference in the overall expected benefit in this case, compared
to the pure equilibrium in which only one agent engages in
exploration, derives from the fact that in the latter case the
agent attempts to maximize its own expected benefit rather
than the overall of the three.

Figure 2 presents an analysis similar to the one given in
Figure 1, however having the number of agents, k, as the
influencing parameter. In this case the exploration cost is
0.1 for all agents, the exploration horizon is n = 3 and
the distribution of values is uniform for all agents as in
Figure 1. Here again there is a single pure equilibrium (in
which only one of the agents engages in exploration) and a
mixed equilibrium. As observed from the figure, the individual
expected benefit of the agents when the mixed equilibrium
solution is used increases as the number of agents increases.
This suggests that the improvement achieved by the addition
of agents (in terms of the number of opportunities that can
now be explored in parallel and overall) is greater than the
decrease in the exploration extent resulting from the reliance
of each of the agents on the others.

Finally, Figure 3 depicts the expected individual benefit of
two homogeneous agents (associated with a cost of exploration
c1 = c2 = 0.2) when adding a third agent whose exploration
cost, c, is given by the horizontal axis. The exploration horizon
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Figure 2. The agents’ expected benefit as a function of the number of agents, k, for the setting: n = 3, c1 = c2 = c3 = 0.1, and a common uniform
distribution. The two possible equilibria are a mixed one and a pure one (where only one agent engages in exploration). (a) Individual expected benefit. (b) A
finer-grained representation for the mixed equilibrium. (c) Overall expected benefit with the equilibria and when the agents are fully cooperative.

is limited to a single opportunity, i.e., n = 1, and the
distribution of values is uniform for all agents as in Figure
1. In this case there is a mixed equilibrium if 0.1 < c < 0.5.
Two additional pure equilibrium also hold for some c values,
both consisting of only one out of the three agents engaging
in exploration. In the first, depicted in (a), the exploring agent
is one of the two homogeneous agents. This equilibrium holds
only for c values in the interval (0.17, 0.5). It is notable that
in this case the expected benefit of the different agents does
not depend on the cost c (which is relevant only to the third
agent) since the agent engaged in exploration is one of the
two homogeneous agents. The expected benefit of the two
homogeneous agents and the third (joining) agent, when the
mixed equilibrium is used, are distinguished by the markings
“Mixed (M)” and “Mixed (T)”, respectively. In the second
pure equilibrium, depicted in (b), the exploring agent is the
third agent (the one who joins the two homogeneous agents).
This equilibrium holds for any c < 0.5 and hence is the only
equilibrium (and necessarily the one used) when c < 0.1. With
this equilibrium the cost of the exploring agent, which is the
third agent, decreases as its cost of exploration c increases
(since neither of the other two agents explore). As with the
former examples, the two pure equilibria in this case suggest
an expected benefit smaller than with the mixed equilibrium
for the agent engaged in exploration and vice-versa for the
agent that does not explore.

A finer-grained representation for the individual expected
benefits obtained by the two homogeneous agents, when using
the mixed equilibrium, is given in Figure 3(c). As observed
from the figure, as the cost of exploration of the third partner
increases, the expected benefit of the two homogeneous agents
increases. However, starting from a certain c value, any further
increase in the exploration cost of the joining agent results in
a decrease in the two agents’ expected benefit. This result
suggests that the agents sometimes should prefer to join the
less competent agent (i.e., the one associated with a smaller
exploration cost compared to other potential candidates) to
their cooperative exploration. The non-intuitiveness of this
result derives from the fact that exploration costs are tra-
ditionally considered “inefficiencies” as they represent the
lack of transparency in which of the environment the agents

are operating [30], [3]. In the presence of exploration costs
a rational player will not aim to find the best option, but
rather settle for “good enough”, beyond which the marginal
cost of exploring exceeds the marginal benefit of continuing
the exploration. Thus, exploration costs promote sub-optimal
results (or so it would seem). As such, the traditional wisdom
is that when designing a MAS environment, exploration costs
should be reduced to a minimum, and indeed (as also reflected
in the figure) the overall expected benefit with the fully coop-
erative case (i.e., when the agents obey the overall expected-
benefit-maximizing strategy) increases as the exploration cost
c decreases. However, when the agents are self-interested, such
generally beneficial solutions often do not hold and eventually
the resulting equilibrium suggests an inferior expected benefit
to the agents when joining an agent with a relatively small
exploration cost.

Figure 3(d) presents the overall expected benefit with the
three equilibria and when the agents are fully cooperative.
From this figure we learn that the choice of equilibrium that
maximizes the overall expected benefit depends on the cost of
exploration of the third agent. In our case the overall expected-
benefit-maximizing equilibrium is the pure equilibrium in
which the third agent is doing all the exploration for c < 0.1,
the mixed equilibrium when 0.1 ≤ c ≤ 0.25 and the other
pure equilibrium otherwise.

V. RELATED WORK

The model analyzed in this paper is based on two important
concepts that are extensively researched in multi-agent systems
literature. The first is cooperation between agents and the sec-
ond is costly exploration. Cooperation evolves in multi-agent
environments whenever agents can benefit from cooperating
and coordinating their actions [15]. Consequently, group-based
cooperative behavior has been suggested in various domains
[29], [31]. The advantages encapsulated in teamwork and
cooperative behaviors are the main driving force of many
coalition formation models in the area of cooperative game
theory and MAS [16] theory. Yet, the majority of cooperation
and coalition formation MAS-related research tends to focus
on the way coalitions are formed and consequently concerns
issues such as the optimal division of agents into disjoint
exhaustive coalitions [26], [31], division of coalition payoffs
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Figure 3. The agents’ expected benefit as a function of a potential partner’s exploration cost, c. The setting consists of two agents characterized by c1 = c2 = 0.2
and a third agent characterized by c. The distribution of opportunities values is a uniform distribution, common to all three agents. There are three possible
equiliria in this case, two pure ones and one mixed. (a) Individual expected benefit in the case where the mixed equilibrium is used and in the case of using a
pure equilibrium where the only agent engaged in exploration is one of the two homogeneous agents. (b) Individual expected benefit in the case where the mixed
equilibrium is used and in the case of using a pure equilibrium where the only agent engaged in exploration is the third agent (which exploration cost differs
from the others). (c) A finer-grained representation of the expected benefit of the two homogeneous agents with the mixed equilibrium. (d) Overall expected
benefit with the three equilibria and when the agents are fully cooperative.

[31] and enforcement methods for interaction protocols [20].
In this paper, however, the focus is on how the cooperation is
carried out, once formed.

Exploration is important in MAS, in particular when there
is no central source that can supply full immediate reliable
information on the environment and the state of the other
agents that can be found. The introduction of exploration
costs into MAS models leads to a more realistic description
of these environments. This is because agents are typically
required to invest/consume some of their resources in order to
obtain information concerning opportunities available in their
environment [3], [13].

Optimal exploration (often referred as “search”) strategies
for settings where individuals need to search for an applicable
opportunity while incurring a search cost have been widely
studied, prompting several literature reviews [17], [19]. These
models have developed to a point where their total contribution
is referred to as “search theory”. Over the years, many search
model variants have been considered, differing in the decision
horizon (finite versus infinite) [17], the presence of the recall
option [19], the distribution of values and the extent to which
findings remain valid along the process [14]. Nevertheless,
search theory literature investigates mainly the extraction of
an optimal stopping rule for the individual exploring agent,
and most often does not consider the system-wise analysis.
Few studies have attempted to extend the exploration to a
multi-agent (or a multi-goal) exploration model, e.g., attempt-
ing to purchase several commodities while facing imperfect
information concerning prices or operating several robots in
order to evaluate opportunities in different locations [12], [27],
[11], [4], [10]. However, these works consider cooperative
agents that attempt, through their coordinated exploration, to
maximize the overall (rather than individual) benefit. One
exception to the above is our recent work that considers a
coordinated exploration model in which the agents are self-
interested [25]. Nevertheless, in that work the agents are
constrained by the results of the exploration carried out by
the other agents rather than benefiting from it. Consequently,
the nature of the equilibrium set of exploration strategies used

is substantially different.

An equilibrium analysis of models where self-interested
agents are engaged in costly exploration can be found in “two-
sided” search literature [2], [5], [28]. The standard two-sided
distributed search model postulates an environment populated
by fully rational self-interested agents, searching for appropri-
ate partners to form mutually acceptable pairwise partnerships.
Nevertheless, in this model the focus is, once again, on the way
the agents decide with whom to partner rather than how to act
cooperatively.

Finally, we note that the non-intuitive finding according to
which the agents should sometimes prefer joining an agent
associated with a greater exploration cost to their group (rather
an agent with a smaller exploration cost) follows, in spirit,
previous results in other settings. In particular, ones in which
it has been shown that so-called “inefficiencies” can increase
market performance, under certain circumstances. For exam-
ple, Masters [18] shows that an increase in the minimum wage,
which is often considered by economics as inefficiency, can
have positive employment effects. In transportation economics
(e.g. congestion games), equilibrium is frequently not the
overall optimum. In such cases, it has been shown that taxation
can change the equilibrium to a more desirable one [23], [22],
[9]. Similarly, taxes can facilitate more desirable equilibria in
Boolean games [8]. Here we show that a somehow similar
phenomena also happens in the context of costly exploration,
though the model and analysis are, of course, totally different
from the above mentioned.

VI. DISCUSSION AND CONCLUSIONS

Unlike prior works that consider extensions of traditional
single-agent sequential exploration models to the multi-agent
case, the analysis given in this paper considers the agents to
be self-interested rather than fully cooperative. As such, the
analysis is essentially equilibrium-based — instead of extract-
ing a strategy that maximizes the overall expected benefit,
the goal is to find a stable solution while each of the agents
attempts to maximize its individual expected benefit, given the
exploration strategy used by the others. Taking the agents to

23



be self-interested makes the model more applicable (than the
fully cooperative one) whenever the agents represent different
individuals with different goals or that cannot be forced to
obey some external solution which is “socially beneficial”.
Naturally, when it comes to implementation, many comple-
mentary aspects of multi-agent collaboration that are beyond
the scope of the current paper need to be considered, such as
ontologies and semantics [1], [24]. This paper is focused in
the way the cooperative exploration itself is executed.

The equilibrium analysis considers both pure and mixed
equilibria. As demonstrated in the former section, typically
none of the equilibria dominates the other, and the deter-
mination of which will hold in the case of multi-equilibria
is unresolved (as in game-theory in general). The mixed
equilibrium solution might seem appealing, as it does not
imply that some of the agents will engage in exploration
whereas others will not. Furthermore, in the case of rather
homogeneous agents it provides a rather balanced distribution
of expected benefits.

Two interesting phenomena illustrated using the analysis of
the mixed equilibrium are the decrease in the expected benefit
of the agents when the exploration horizon increases and the
preference of additional “weak” rather than “strong” agents as
far as cooperative exploration is concerned. Both are explained
by the stability requirement: while better solutions can be
extracted whenever the number of opportunities available to
the agents increases and when the more competent agents join
the collective exploration effort, these solutions cannot hold,
as some of the agents have an incentive to individually deviate
from them.

One possible extension of the model suggested for future
study is a cooperative exploration model with self-interested
agents that can communicate along the process. For instance,
in our example, Jack and Jill can communicate using their
mobile phones and share findings as they individually visit
the different stores. The analysis in this case can rely, in
part, on the principles given in this paper. In the new model,
however, instead of assigning an exploration probability to
any individual agents’ exploration as a whole, each agent will
need to set its exploration probability per round, given the
best value received so far by any of the agents and the time
remaining for the exploration. The equilibrium strategies can
thus be calculated in this case using dynamic programming.
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